Tetrahedron Letters, Vol.30, No.3, pp 341-344, 1989 0040-4039/89 \$3.00 + .00 Printed in Great Britain Pergamon Press plc

SYNTHESIS OF A FUROFURANIC MODEL OF NATURAL ANTIFEEDING SUBSTANCES

A.P. Brunetière, M. Leclaire, S. Bhatnagar, J.Y. Lallemand*

Laboratoire de Synthèse Organique, Ecole Polytechnique 91128 PALAISEAU France

and J. Cossy

Laboratoire de Photochimie, Université de Reims 51062 REIMS France

<u>Summary</u>: A furofuranic model of azadirachtin is synthesized, using in the key step a single electron transfer cyclization.

Research in pest control has recently focused on azadirachtin¹. Recent studies have indicated that the pyranofuran subunit <u>1</u> of this molecule may be partially responsible for this activity². To complete these studies we propose here a synthesis by a new method of another model (structure <u>2</u>) also encountered in various natural products such as aflatoxin³.

As radical cyclization proved to be an excellent approach towards the furofuran skeleton⁴, we have investigated the possibility of starting with acetylenic ketone $\underline{3}$ which could lead through a single electron transfer cyclization to alcohol 5.

Ketone 3 was prepared according to our previously published procedures⁵. Various electron donnors were tried for generating the radical anion $\underline{4}$. Alkaline metals such as sodium in liquid ammonia⁶ or the naphtalene sodium radical anion⁷ did not give any useful reaction whereas activated zinc and the isopropyl iodide⁸ gave alcohol <u>6</u>. Activated zinc-trimethylsilyl chloride and 2,6-lutidine⁹ on the other hand led to a mixture of cyclized compounds <u>5</u> and <u>7</u> (yields <u>5</u> : 12 %, <u>7</u> : 10 %). The best method however turned out to be the photochemical activation in the presence of triethylamine¹⁰ (as electron source). This procedure afforded alcohol <u>5</u> in an acceptable yield (57 %). The structure of <u>5</u> was deduced on the basis of NRM data¹¹.

a:i)mCPBA,CH₂CL₂,0°C;ii)H0CH₂C≡CH,Ts0H cat.;b:DCC,DMS0,H₃PO₄ cat.,Ac0Et or CrO₃,H₂SO₄,Acetonc

Two routes were next tried to convert compound 5 into 2. The first was inspired from the methodology we have developed in earlier syntheses of similar compounds .

a: Ac₂0,DMAP,Et₃N,CH₂Cl₂(82%);b:0₃,-78°C,CH₂Cl₂;Me₂S,-78°C(100%);c:LiA1H₄,THF,0°C(82%); d:TsCl,Pyridine(31%);e:DBU,Toluene,Reflux(48%);f:tBuMe₂SiCl,Imidazole,CH₂Cl₂(88%);g:0₃,-78°C,CH₂CL₂; Me₂S,-78°C(100%);h:H₂NNHTs,Me0H,H₂0(72%);i:H0CH₂CH₂OH,Na,140°C,0,25h.(81%);j:nBu₄NF,THF(79%).

Alcohol 5 was protected as the acetate¹² and then ozonized. Reduction of 8 followed by treatment with tosyl chloride and pyridine, gave two isomeric tosylates 9a and 9b. However, only isomer 9a yielded the desired product 2 on heating with DBU in a moderate yield. A much superior approach based on the Bamford-Stevens reaction^{13,14} was successfully developed. The structure of 2 was deduced from both ¹H and ¹³C NMR spectroscopy¹⁵. This gave sufficient amounts of pure 2 for biological testing which is now underway.

REFERENCES and NOTES

- 1. (a) For a recent report on the structure of azadirachtin and related compounds, see D.A.H. Taylor, <u>Tetrahedron</u>, (1987), <u>43</u>, 2779.
 - (b) For a review on the biological activity of azadirachtin, see :
 H. Rembold and E. de Souza Garcia, <u>J. Insect. Physiol.</u>, (1984), <u>30</u>, 939.
- 2 . (a) S.V. Ley, D. Santafianos, W.M. Blaney and M.S.J. Simmonds, Tetrahedron Lett., (1987), 28, 221 .
 - (b) D. Pflieger, B. Münckenstrum, P.C. Robert, M.J. Simonis and J.S. Kienlen, Tetrahedron Lett., (1987), 28, 1519.
- 3 . (a) For a report about aflatoxins, see : L.A. Goldblatt : "Aflatoxin", Academic Press, New York (1969) .
 - (b) G. Büchi, S. Weinred, J. Amer. Chem. Soc., (1971), 73, 746.
- M. Pezechk, A. Brunetière and J.Y. Lallemand, <u>Tetrahedron Lett.</u>, (1986), <u>27</u>, 3715 and references cited therein .
- 5 . M. Jalali-Naini and J.Y. Lallemand, Tetrahedron_Lett., (1986), 27, 497 .
- 6 . G. Stork, R.K. Boeckmann Jr., D.F. Taber, S. Still and J. Singer, J. Amer. Chem. Soc., (1979), <u>101</u>, 7107.
- 7. S.K. Pradhan, T.V. Radhakrishnan and R. Subramanian, <u>J. Org. Chem.</u>, (1976), <u>41</u>, 1943.
- 8. T. Shono, H. Hamaguchi, J. Nishiguchi, M. Sasaki, T. Miyamoto, M. Miyamoto and S. Fujita, <u>Chem. Lett.</u>, (1981), 1217.
- 9. E.J. Corey and S.G. Pyne, Tetrahedron Lett., (1983), 24, 2821.
- 10. D. Belotti, J. Cossy, J.P. Pete and C. Portella, <u>Tetrahedron Lett.</u>, (1985) <u>26</u>, 4591.
- 11 . ¹H NMR (400 MHz, CDCl₃) ; δ (ppm) : 5.40 (s, H-1) ; 5.35 (t, H-9, J = 2 Hz) ; 5.15 (t, H-9, J = 2 Hz) ; 4.61 (t, H-3, J = 2 Hz) ; 4.12 (td, H-7, J = 4, 6, 6 Hz) ; 3.96 (td, H-7, J = 10, 10, 6 Hz) ; 2.28 (m, H-6) .

		¹³ C NMR (50.3 MHz, CDC1 ₃); δ (ppm) : 151.6 (C-4); 112.6 (C-1); 107.1 (C-9); 86.5 (C-5); 71.6 (C-3); 68.4 (C-7); 40.0 (C-6).
12	•	Ozonization of 5 failed but was successful on 5 protected as acetate leading to ketone 8 .
13	•	Dihydrofuranshave already been prepared using this method, M.A. Gianturco, D. Friedel and V. Flanagan, <u>Tetrahedron Lett.</u> , (1965), 1847 .
14	•	(a) W.R. Bamford and T.S. Stevens, <u>J. Chem. Soc.</u> , (1952), 4735 . (b) R.H. Shapiro, "Organic Reactions", (1976), <u>23</u> , 405 .
15	•	¹ H NMR (200 MHz, CDCl ₃); δ (ppm): 6.60 (d, H-3, J = 3 Hz); 5.64 (s, H-1); 5.06 (d, H-4, J = 3 Hz); 4.13 (ddd, H-7, J = 7.5, 1, 9 Hz);

3.85 (ddd, H-7, J = 12, 5.5, 9 Hz); 2.24 (td, H-6, J = 12, 7.5, 12 Hz); 2.20 (dd, H-6, J = 12, 5.5 Hz). 13 C NMR (50 MHz, CDCl₃); δ (ppm) : 150.34 (C-3); 113.43 (C-1); 104.70 (C-4); 90.61 (C-5); 69.34 (C-7); 38.98 (C-6).

(Received in France 6 October 1988)